量子计算为某些问题提供了指数加速的潜力。但是,许多具有可证明加速的现有算法都需要当前不可用的耐故障量子计算机。我们提出了NISQ-TDA,这是第一个完全实现的量子机学习算法,其在任意经典(非手动)数据上具有可证明的指数加速,并且仅需要线性电路深度。我们报告了我们的NISQ-TDA算法的成功执行,该算法应用于在量子计算设备以及嘈杂的量子模拟器上运行的小数据集。我们从经验上证实,该算法对噪声是可靠的,并提供了目标深度和噪声水平,以实现现实世界中问题的近期,无耐受耐受性的量子优势。我们独特的数据加载投影方法是噪声鲁棒性的主要来源,引入了一种新的自我校正数据加载方法。
translated by 谷歌翻译
混音是指基于插值的数据增强,最初是作为超越经验风险最小化(ERM)的一种方式。然而,它的扩展侧重于插值的定义及其发生的空间,而增强本身的研究较少:对于$ m $的小批量,大多数方法在$ m $对之间的插值与单个标量插值之间的插值因子$ \ lambda $。在这项工作中,我们通过引入Multimix来朝这个方向取得进展,Multimix插入了任意数字$ n $的元组,每个元组,长度$ m $,一个vector $ \ lambda $每个元组。在序列数据上,我们进一步扩展到所有空间位置上的密集插值和损失计算。总体而言,我们通过数量级以几乎没有成本来增加每个小批量的元素数量。通过在分类器之前的最后一层插值来可以通过插值。最后,为了解决因线性目标插值而引起的不一致之处,我们引入了一种自我鉴定方法来生成和插值合成目标。我们从经验上表明,我们的贡献导致对四个基准测试的最先进混合方法的显着改善。通过分析嵌入空间,我们观察到这些类更紧密地聚集并均匀地分布在嵌入空间上,从而解释了改善的行为。
translated by 谷歌翻译